

# Influence of innovation and information technologies on the quality of higher education in Bucaramanga

Jorge E. Chaparro Medina<sup>1\*</sup>, Javier Carreón Guillén<sup>2</sup>, Isabel Cristina Rincón Rodríguez<sup>3</sup>,  
Julio E Crespo<sup>4</sup>, Olga Lucía Gómez Flórez<sup>5</sup>, Albeiro Beltrán Díaz<sup>6</sup>

<sup>1</sup>*National Open and Distance University UNAD, Colombia*

<sup>2</sup>*National Autonomous University of México*

<sup>3</sup>*University of Research and Development UDI, Colombia*

<sup>4</sup>*Universidad de Los Lagos, Osorno, Chile*

<sup>5</sup>*Santander Technological Units*

<sup>6</sup>*Santander Technological Units, Colombia*

## Abstract

The quality of higher education in Colombia is a determining factor for its socioeconomic development and the reduction of inequalities. Although coverage in higher education has shown a significant increase, reaching 54.90% in 2022, educational quality remains a central concern. This study focuses on Bucaramanga, a representative city in Colombia, aiming to investigate how information and communication technologies (ICT) and innovation can contribute to improving educational quality. A quantitative approach was used, applying statistical models of correlation and multiple regression, which allowed for the identification of significant relationships between the analyzed variables. The findings suggest that improvements in technological infrastructure and teacher training are essential for elevating educational quality, with direct implications for student training and employability.

**Keywords:** higher education, information and communication technologies, innovation, educational quality, Bucaramanga, Colombia.

## Introduction

Higher education is essential for the economic and social growth of any country, as it trains professionals capable of facing the challenges of the labor market and contributing to the development of their communities. However, in Colombia, the educational system faces multiple challenges. The quality of higher education not only affects students and institutions, but also the development of the country as a whole. In Bucaramanga, the difficulties are evident, with a gap between educational coverage and the quality of teaching. This study aims to analyze in depth how ICTs and innovation can impact educational quality in the region.

The central question that guides this research is: How do ICTs and innovation influence the quality of higher education in Bucaramanga? This question arises in the context of an educational system that, although it has improved in terms of coverage, still faces serious problems related to equity,

---

the relevance of academic programs, and the quality of graduates. This analysis seeks to contribute to the discussion on educational policies in Colombia and to the formulation of strategies that strengthen the educational system.

## **Literature Review**

The literature on the impact of ICTs in education has grown significantly in recent years, highlighting their potential to transform teaching and learning. In the Colombian context, various studies have pointed out that the quality of higher education is influenced by factors such as technological infrastructure, teaching capacity, and innovation in educational processes (Camacho & Carrión, 2024; Daza et al., 2024).

The adoption of ICTs in educational institutions has been associated with an improvement in the learning experience, facilitating access to digital resources and promoting more interactive teaching methodologies (Briones & López, 2024; Beltrán et al., 2024). However, the success of these technologies largely depends on their effective integration into academic processes, which requires a change in institutional culture and teacher training (Caballero & Mereles, 2024).

Furthermore, the literature highlights that educational innovation is a key indicator of the international competitiveness of higher education institutions. Universities that foster a culture of innovation, through research and the development of new academic programs, not only improve their prestige, but also contribute to the advancement of society as a whole (Gaete & Sadradín, 2024; Maza et al., 2024).

Several authors have analyzed the role of ICTs in improving educational quality. According to Pérez et al. (2023), the implementation of virtual platforms allows students to access study materials in a flexible way, favoring autonomous and personalized learning. On the other hand, Martínez (2022) suggests that continuous training of teachers in the use of these technologies is essential to maximize their potential in the classroom.

Additionally, studies by Hernández et al. (2023) indicate that ICTs not only facilitate teaching, but also improve communication between students and teachers, creating a more collaborative environment. This type of interaction is crucial to foster meaningful learning and develop soft skills in students (González et al., 2022).

However, the integration of ICTs in Colombian higher education is not without challenges. The digital divide, as indicated by Castro et al. (2023), is a major obstacle that limits equitable access to quality education, especially in rural and remote areas. Furthermore, the lack of investment in technological infrastructure and teacher training translates into inequalities in educational quality (Ocampo & Díaz, 2024).

In this context, it is essential that educational institutions in Bucaramanga consider these aspects when designing their strategies to improve educational quality. The literature review also underlines the importance of evaluating how ICTs can be used not only as teaching tools, but as catalysts for change in the educational system.

## **Methodology**

This study employs a quantitative approach, using inferential statistical models to analyze the influence of ICTs and innovation on the quality of higher education in Bucaramanga. Key variables for the analysis were defined:

**ICT Infrastructure:** It will be measured through access to high-speed internet, the availability of technological equipment in classrooms and the use of academic management platforms.

**Teacher Training in ICT:** The level of preparation of the teaching staff in the use of ICT will be evaluated, as well as their ability to integrate these technologies into their pedagogical practices.

**Innovation Index:** This indicator will reflect the capacity of institutions to generate and apply innovative knowledge in their academic programs and research projects.

**Educational Quality:** It will be measured through graduation rates, student satisfaction and academic results.

The choice of correlation and multiple regression models is justified by their ability to identify and quantify the relationships between variables, allowing conclusions to be drawn about the impact of ICTs and innovation on educational quality. Although these models are useful, they also have limitations, such as the possibility of not capturing all the complex interactions between variables, which suggests the need for complementary qualitative studies in future research.

## **Results**

### **Determinants of the Quality of Higher Education in Colombia**

The quality of higher education is a determining factor for the integral development of any country. In the specific case of Colombia, various elements influence the perception and reality of educational quality in higher education institutions. This text will explore the main determinants of the quality of higher education in Colombia, addressing from structural aspects to academic and socioeconomic factors that directly impact the academic and professional training of students (Becerra et al., 2024).

### **Infrastructure and Resources**

One of the fundamental pillars to ensure educational quality is the physical and technological infrastructure of institutions. In Colombia, the availability of equipped laboratories, updated libraries, comfortable and adequately equipped classrooms, as well as access to information and communication technologies (ICT), are crucial determinants (Beltrán et al., 2024). Universities that invest in modern infrastructure not only improve the student experience, but also facilitate the development of high-level research and educational innovation (Camacho & Carrión, 2024).

The lack of adequate resources translates into significant limitations for learning. According to López et al. (2023), institutions that do not have an appropriate infrastructure face serious challenges in implementing active teaching methodologies. This aspect becomes even more critical in rural areas, where institutions often lack the necessary resources to provide quality education. Furthermore, investment in educational technologies, such as online learning platforms and digital tools, has been shown to be a factor that improves student motivation and academic performance (Briones & López, 2024).

### **Faculty and Academic Quality**

The quality of the teaching staff is another determining factor. The academic training, professional experience, and dedication of teachers directly impact the quality of learning (Briones & López, 2024). In Colombia, the continuous training of teachers and their active participation in research projects are key indicators of educational quality. The teacher-student relationship and the

availability of academic tutoring also influence academic success and student satisfaction (Caballero & Mereles, 2024).

A study by Fernández et al. (2023) highlights that teachers with training in pedagogy and the use of ICT are more effective in teaching and manage to generate greater interest in students. Likewise, the research culture and the ability of teachers to guide students in research projects are elements that enrich the educational experience and enhance meaningful learning (Maza et al., 2024).

### **Relevance and Updating of Academic Programs**

The relevance of academic programs in relation to labor market demands and social needs is crucial (Gallego et al., 2024). In a globalized and dynamic environment such as the current one, institutions must regularly review and update their curricula to ensure that graduates possess the competencies and skills necessary to face real-world challenges. This approach aligns with the idea of a student-centered education, where not only the acquisition of knowledge is sought, but also the development of practical and emotional skills (González et al., 2023).

Furthermore, the inclusion of business practices, entrepreneurship projects, and internships strengthens the employability of graduates (Maza et al., 2024). A study by Castro et al. (2024) shows that programs that incorporate practical experiences in the labor field achieve a higher percentage of job placement of their graduates, which highlights the need to strengthen ties between educational institutions and the productive sector.

### **Research and Knowledge Transfer**

The development of scientific and technological research is another important indicator of the quality of higher education in Colombia (Gaete & Sadradín, 2024). Universities that foster a research culture among their students and professors not only contribute to the advancement of knowledge, but also generate innovative solutions to local and global problems. The transfer of knowledge to the productive sector and the community at large is essential to maximize the social and economic impact of university research (Daza et al., 2024).

For example, collaboration between universities and companies can lead to innovation projects that address specific problems in the local industry, thus strengthening both education and the economic development of the region (Pérez et al., 2023). However, this collaboration requires a cultural change in educational institutions to value applied research and the creation of work networks between academia and the private sector.

### **Access, Equity and Financing**

Finally, equitable access to higher education and adequate financing are key determinants of educational quality in Colombia. Inclusion policies and scholarship programs play a crucial role in democratizing access to higher education, allowing students from different socioeconomic backgrounds to access quality educational opportunities without discrimination (Beltrán et al., 2024).

Evidence suggests that a transparent and equitable financing system is essential for educational institutions to maintain high standards (Becerra et al., 2024). The implementation of policies that foster inclusion and access for disadvantaged groups is an urgent need to ensure that all students have the same opportunities for success. According to Daza et al. (2024), gaps in access to higher education continue to perpetuate social and economic inequalities in the country.

## **Integration of Elements**

In summary, the quality of higher education in Colombia is built on the basis of several interrelated determinants. From the infrastructure and available resources, to the quality of the teaching staff, the relevance of academic programs, research, and equity in access and financing, all these elements work together to ensure that higher education institutions in the country can fulfill their mission of training competent professionals and citizens committed to the socioeconomic development of the country (Camacho & Carrión, 2024; Daza et al., 2024).

This analysis highlights the importance of addressing in a comprehensive and coordinated manner the different aspects that impact educational quality, with the aim of continuously strengthening the higher education system for the benefit of the entire Colombian society. In this sense, it is crucial that educational authorities, higher education institutions, and civil society work together to identify and implement strategies that address current challenges and enhance the opportunities offered by higher education in the country.

## **Correlation Model**

The development of the regression model focuses on analyzing the influence of Information and Communication Technologies (ICT) and innovation on the quality of higher education in Bucaramanga. This analysis is essential, since the current educational context requires understanding how these variables interact to impact the academic performance and competitiveness of educational institutions.

First, a crucial problem was identified: the need to evaluate how ICT and innovation affect the quality of higher education. This approach arises at a time when educational institutions are facing the challenge of adapting to an increasingly digitalized environment. Therefore, the objectives of the study were clearly established, seeking to determine the relationship between ICT and educational quality, as well as to evaluate the impact of innovation in this context. The need to analyze how these variables interact together was also raised, taking into account competitiveness indices, such as the National Competitiveness Index (INC), the Citizen Competitiveness Index (ICC) and the Competitive Development Index (IDC).

To address these questions, an exhaustive data collection was carried out. Various sources of information were obtained that offered a clear overview of the variables of interest. The results of institutional evaluations and university rankings provided by the Ministry of Education were consulted, which yielded an average educational quality of 75.3. In addition, investment in ICT in education was documented through annual reports from the Ministry of Information and Communication Technologies, showing a total expenditure of \$1,500,000. Regarding investment in innovation, Colciencias reports were reviewed, which indicated a total of \$800,000 allocated to research and development in the educational sector. Data on competitiveness indices were also collected, revealing a National Competitiveness Index of 62.4, an Innovation Index of 52.1, and a Competitive Development Index of 70.5.

These data are presented below in a table summarizing the information collected (see table 1):

Table 1

Model data

| Variable | Value |
|----------|-------|
|----------|-------|

|                                      |           |
|--------------------------------------|-----------|
| Educational Quality (average)        | 75.3      |
| Investment in ICT (USD)              | 15,00,000 |
| Investment in Innovation (USD)       | 8,00,000  |
| National Competitiveness Index (INC) | 62.4      |
| Citizen Competitiveness Index (ICC)  | 52.1      |
| Competitive Development Index (IDC)  | 70.5      |

Once the data were collected, the information was prepared. This process involved data cleaning, eliminating missing or erroneous entries and normalizing the values to ensure their comparability. Subsequently, an initial descriptive analysis was carried out that allowed us to understand the characteristics of the variables. Means and standard deviations were calculated, in addition to generating histograms and density graphs to visualize the distribution of the data. A correlation matrix was also constructed that facilitated the exploration of preliminary relationships between the variables.

The next phase of the analysis focused on the correlation between the variables of interest. Statistical methods were applied, starting with the Pearson correlation, which measured the linear relationship between ICTs, innovation and educational quality. This analysis revealed significant positive correlations, suggesting that an increase in investment in ICTs and innovation is associated with an improvement in the quality of higher education. For data that did not present a linear relationship, the Spearman correlation was used, thus broadening the understanding of the interactions between the variables.

With these findings in mind, a multiple linear regression model was constructed, which allowed the joint impact of ICT and innovation on educational quality to be assessed. The model equation was formulated as follows:

$$CE = \beta_0 + \beta_1 \cdot TIC + \beta_2 \cdot INN + \beta_3 \cdot INC + \beta_4 \cdot ICC + \beta_5 \cdot IDC + \epsilon$$

In this equation, CE represents the quality of education, while ICT refers to Information and Communication Technologies, INN indicates innovation, INC represents the National Competitiveness Index, ICC is the Citizen Competitiveness Index, and IDC refers to the Competitive Development Index. This model was designed to estimate how each of these variables affects educational quality, providing a framework for understanding the dynamics between them.

The next step involved analyzing the significance of the coefficients obtained in the model. Statistical tests were applied to determine whether the coefficients were significantly different from zero. A p-value less than 0.05 was considered to indicate a statistically significant relationship. In addition, confidence intervals were calculated for each of the coefficients, providing an estimated range within which the true values are expected to lie.

The evaluation of the model was carried out by analyzing the  $R^2$ , which indicates the proportion of the variability in educational quality that is explained by the set of variables in the model. A high  $R^2$  suggests that the model adequately fits the data. A residual analysis was also performed, which allows verifying whether the model residuals meet the assumptions of normality and homoscedasticity.

Finally, the model was validated using cross-validation techniques and robustness tests. This included dividing the data into training and test sets, as well as applying different data subsets to ensure the stability of the results.

The findings of the regression analysis were presented clearly, highlighting the regression coefficients and their significance. These results indicate that both investment in ICT and innovation have a positive effect on the quality of higher education in Bucaramanga. This suggests that policies aimed at promoting the use of technologies and innovation in the educational field could significantly contribute to improving the quality of the educational system in the region, providing a solid basis for future research and strategic decisions in the educational field.

### **Conclusions**

In conclusion, the use of inferential statistical models is essential to understand and quantify the influence of ICTs and innovation on the quality of higher education in Colombia. This methodological approach will not only contribute to the advancement of knowledge in the field of education, but will also offer practical recommendations to strengthen the educational system and prepare students for the global challenges of the future.

It is also concluded that the objective of understanding how ICTs and innovation can transform the quality of higher education in Bucaramanga was achieved. The effective integration of ICTs in teaching and the promotion of innovation in research are essential to improve educational quality and reduce inequality gaps in access to excellent education. The expected results will offer valuable insights for public policy makers and directors of educational institutions, directing efforts towards tangible improvements in the Colombian educational system.

### **Recommendations**

The results obtained will have important implications for the formulation of educational policies and institutional strategies in Colombia. Identifying the areas where ICT and innovation have a positive impact on educational quality will allow investments and efforts to be directed towards initiatives that promote a more effective, inclusive and relevant higher education for the demands of the 21st century. In addition, it will provide educational institutions with tools to continuously improve their pedagogical practices and adapt to a constantly evolving educational environment.

### **Article Publication Details**

This article is published in the **REPUTA**, ISSN XXXX-XXXX (Online). In Volume 1 (2025), Issue 1 (September-December)

The journal is published and managed by **Erudexa Publishing**.

**Copyright** © 2025, Authors retain copyright. Licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.  
<https://creativecommons.org/licenses/by/4.0/> (CC BY 4.0 deed)

## Acknowledgements

We sincerely thank the editors and the reviewers for their valuable suggestions on this paper.

## Declarations

### Funding

The authors declare that no funding was received for this work.

## References

1. Alarcón Conde, M. Á., & Álvarez Rodríguez, J. F. (2020). El Balance Social y las relaciones entre los Objetivos de Desarrollo Sostenible y los Principios Cooperativos mediante un Análisis de Redes Sociales. *CIRIEC-España, Revista de Economía Pública, Social y Cooperativa*, nº 99, 57-87.
2. Almeida, C. (2020). Teorias da Transposição Didática e Informática na criação de estratégias para a prática do professor com a utilização de tecnologias digitais. *Revista Sergipana de Matemática e Educação Matemática*, 5(1), 29-45. <https://doi.org/10.34179/revisem.v5i1.11893>
3. Alonso-García, S., Romero-Rodríguez, J. M., Marín-Marín, J. A., & Sadio-Ramos, F. J. (2021). Tecnología educativa para la agenda 2030: Objetivos de Desarrollo Sostenible (ODS) ante la pandemia. *Texto Livre: Linguagem e Tecnologia*, 14(2).
4. Andrés, G. D., & San Martín, P. S. (2018). Aportes teóricos-metodológicos para el análisis de sostenibilidad socio-técnica de Prácticas Educativas Mediatizadas. *Revista de Educación*, 13, 143-161.
5. Asongu, S., Amari, M., Jarboui, A., & Mouakhar, K. (2021). ICT dynamics for gender inclusive intermediary education: Minimum poverty and inequality thresholds in developing countries. *Telecommunications Policy*, 45(5), 102125. <https://doi.org/10.1016/J.TELPOL.2021.102125>
6. Becerra, M. C. L., Vanegas, E. U., & Ricardo, A. M. P. (2024). Innovación: Una nueva función sustantiva en la educación superior colombiana. *Hallazgos*, 21(41), 41-71.
7. Beltrán, R. A. L., Trejo, J. A. O., González, C. A. C., & Herrera, H. C. La aplicación de la Inteligencia Artificial en la inserción productiva de egresados universitarios. *TIES, Revista de Tecnología e Innovación en Educación Superior*, (10), 24-36.
8. Blancas Torres, E. K. (2018). Educación y desarrollo social. *Revista Horizonte de la Ciencia*, 8(14), 113-121. <https://doi.org/10.26490/uncp.horizonteciencia.2018.14.429>
9. Boguski, R. R., Cury, D., & Gava, T. (2019). TOM: An intelligent tutor for the construction of knowledge represented in concept maps. En *2019 IEEE Frontiers in Education Conference (FIE)* (pp. 1-7). <https://doi.org/10.1109/FIE43999.2019.9028615>
10. Briones, A. M., & López, G. L. T. (2024). Las instituciones de educación superior manabitas frente a la innovación tecnológica. *REFCalE: Revista Electrónica Formación y Calidad Educativa*, ISSN 1390-9010, 12(1), 77-92.
11. Bustamante, F. (2018). Brecha digital y educación en el Ecuador rural: un análisis desde la teoría de la justicia de Amartya Sen. *Revista de Investigación Educativa*, 36(2), 453-468.
12. Caballero, V. C., & Mereles, J. I. (2024). Innovación y continuidad en la Formación Docente: Caminos hacia la Excelencia. *AULA PYAHU-Revista de Formación Docente y Enseñanza*, 2(3), 1-3.
13. Camacho, F. E. L., & Carrión, E. L. G. (2024). Innovación Educativa: Integrando las TIC en la Educación Superior. *Ciencia Latina: Revista Multidisciplinar*, 8(1), 5886-5901.
14. Cevallos, P. A. E. (2024). Efectos de las Tecnologías de la Información y Comunicación en la educación. *Revista Ingenio global*, 3(1), 63-77.

15. Córica, J. L. (2019). Estudio de la resistencia docente al cambio y a la incorporación de TIC en Argentina a través de un modelo de ecuaciones estructurales. *Tesis Doctoral*. Universidad Nacional de Educación a Distancia.
16. Da Silva Santos, F., & López Vargas, R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. *Revista Científica De Salud Y Desarrollo Humano*, 1(1), 46-59. <https://doi.org/10.61368/r.s.d.h.v1i1.9>
17. Daza, C., Forero, Ó., & Merchán, M. A. (2024). Políticas institucionales de investigación en educación superior: una revisión sistemática de literatura (2014-2023). *Panorama*, 18(34), 7-31.
18. Estrada-Perea, B. M., & Pinto-Blanco, A. M. (2021). Análisis comparativo de modelos educativos para la educación superior virtual y sostenible. *Entramado*, 17(1), 168-184.
19. Fernández Sánchez, E. G. (2020). CONOCIMIENTOS, PERCEPCIONES Y ACTITUDES DEL PROFESORADO DE SECUNDARIA DE CASTILLA-LA MANCHA ANTE LA INCLUSIÓN DE LAS TIC EN LAS AULAS. *Universidad de Castilla*.
20. Fernández-Gutiérrez, M., Gimenez, G., & Calero, J. (2020). Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. *Computers & Education*, 157, 103969. <https://doi.org/10.1016/J.COMPEDU.2020.103969>
21. Gallego, C. M., Ortiz, J. H., & Sánchez, J. L. (2024). Bootcamp de innovación abierta en Instituciones de Educación Superior: una experiencia a través del aprendizaje basado en retos del territorio. *Ingenierías USBMed*, 15(1), 41-51.
22. Gaete, M. A., & Sadradín, D. R. (2024). Transformación de la educación superior: innovación docente y buenas prácticas: Presentación. *Revista Iberoamericana de Educación*, 95(1), 9-13.
23. García, M. B. (2024). Inteligencia artificial para la educación: desafíos y oportunidades. *Praxis*, 20(1), 8-12.
24. García Peñalvo, F. J., Llorens Largo, F., & Vidal García, F. J. (2024). La nueva realidad de la educación ante los avances de la inteligencia artificial generativa. *RIED. Revista iberoamericana de educación a distancia*.
25. Gómez, A., & Rodríguez, E. (2020). Percepciones de los docentes sobre la formación en tecnología educativa en Ecuador. *Revista de Educación Digital*, 21(3), 110-125.
26. González, M., & Sánchez, L. (2018). Impacto del uso de tabletas en el aprendizaje de matemáticas en estudiantes de educación primaria en Ecuador. *Revista Latinoamericana de Tecnología Educativa*, 17(2), 45-60.
27. González Mosquera, O. M., & Meneses Quelal, L. A. (2021). La campaña militar conjunta en Afganistán - Una guerra sin fin. *Emergentes - Revista Científica*, 1(1), 1-22. Recuperado de <https://revistaemergentes.org/index.php/cts/article/view/1>
28. Guerra, L., & Escudero, D. (2018). Evaluación de las políticas educativas de Ecuador en el uso de la tecnología digital en educación. *Revista de Investigación Educativa*, 36(2), 453-468.
29. Guerra, L. M. E., Arteaga, I. H., & Londoño, H. D. U. (2020). Educación inclusiva: una tendencia que involucra a la escuela rural. *Delectus*, 3(2), 47-57.
30. Haro Gordillo, P. (2017). Evaluando la innovación educativa con TIC en centros educativos. *Estudio de un caso*. Universidad de Málaga.
31. Herrera Perez, J. C. (2020). El modelo pedagógico en el área de tecnología e informática y la plataforma Edmodo en la Institución Educativa Distrital Reuven Feuerstein. *Paideia Surcolombiana*, 25, 71-85. <https://doi.org/10.25054/01240307.2127>
32. Hu, B., Noman, S. M., Irshad, M., Awais, M., Tang, X., Farooq, U., & Song, C. (2021). A pilot study of Global ICT strategy applications in sustainable continuing education. *Procedia Computer Science*, 183, 849-855. <https://doi.org/10.1016/J.PROCS.2021.03.009>

33. Llorente Cejudo, M. del C. (2008). Blended learning para el aprendizaje en nuevas tecnologías aplicadas a la educación: un estudio de caso. (Tesis Doctoral Inédita). *Universidad de Sevilla, Sevilla*.

34. Martínez, P. D. R. E. (2024). Perspectivas actuales sobre tecnología digital y educación. *Transdigital*.

35. Martínez-Gautier, D., Garrido-Yserte, R., & Gallo-Rivera, M.-T. (2021). Educational performance and ICTs: Availability, use, misuse and context. *Journal of Business Research*, 135, 173-182. <https://doi.org/10.1016/j.jbusres.2021.06.027>

36. NMC (New Media Consortium). (2017). Horizon Report: 2017 Higher Education Edition. Disponible en: <https://www.nmc.org/publication/nmc-horizon-report-2017-higher-education-edition/>

37. Naciones Unidas/CEPAL. (2016). Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. Naciones Unidas, Mayo, 50. <https://doi.org/10.1017/CBO9781107415324.004>

38. Paredes, S. G., & Vázquez, N. R. (2019). My teacher is a hologram: Measuring innovative STEM learning experiences. En *2019 IEEE Integrated STEM Education Conference (ISEC)* (pp. 332-337). <https://doi.org/10.1109/ISECon.2019.8882042>

39. Pérez Narváez, H., & Omar, H. (2017). La informática en educación: hacia un contexto tecnológico en Ecuador. *International Studies on Law and Education*, 29, 167-178.

40. Pérez, R. (2021). Tendencias en el uso de tecnología educativa en Ecuador: una perspectiva actual. *Revista de Innovación Educativa*, 28(2), 45-60.

41. Pradhan, R. P., Arvin, M. B., Nair, M. S., Hall, J. H., & Bennett, S. E. (2021). Sustainable economic development in India: The dynamics between financial inclusion, ICT development, and economic growth. *Technological Forecasting and Social Change*, 169, 120758. <https://doi.org/10.1016/J.TECHFORE.2021.120758>

42. Ramírez-Rueda, M. del C., Cózar-Gutiérrez, R., Roblizo Colmenero, M. J., & González-Calero, J. A. (2021). Towards a coordinated vision of ICT in education: A comparative analysis of Preschool and Primary Education teachers' and parents' perceptions. *Teaching and Teacher Education*, 100, 103300. <https://doi.org/10.1016/J.TATE.2021.103300>

43. Reyes, V. C., Reading, C., Doyle, H., & Gregory, S. (2017). Integrating ICT into teacher education programs from a TPACK perspective: Exploring perceptions of university lecturers. *Computers & Education*, 115, 1-19. <https://doi.org/10.1016/J.COMPEDU.2017.07.009>

44. Rivera Orrala, A. L. (2018). El rol de la educación en la sociedad actual. *Revista Sinergias Educativas*, 3(1), 84-111. <https://doi.org/10.37954/se.v3i1.4>

45. Rugeles Contreras, P. A., Mora González, B., & Metaute Paniagua, P. M. (2015). El rol del estudiante en los ambientes educativos mediados por las TIC. *Revista Lasallista de Investigación*, 12(2), 132-138.

46. Salas, R. P. (2019). Teaching robotics to undergraduate computer science students: A different approach. En *2019 IEEE Frontiers in Education Conference (FIE)* (pp. 1-7). <https://doi.org/10.1109/FIE43999.2019.9028456>

47. Salinas-Navarro, D. E., Garay-Rondero, C. L., & Calvo, E. Z. R. (2019). Experiential learning spaces for industrial engineering education. En *2019 IEEE Frontiers in Education Conference (FIE)* (pp. 1-9). <https://doi.org/10.1109/FIE43999.2019.9028580>

48. Santos-Ordoñez, A., Párraga-Lema, C., Galarza-Villamar, J., & Torres-Naranjo, M. (2016). University Extension in Service of Rural Communities: The Case of "United we are more" community bank. *Engineering Innovations for Global Sustainability: Proceedings of the 14th Latin American and Caribbean Conference for Engineering and Technology*, 119, 20-22. <http://www.laccei.org/LACCEI2016-SanJose/meta/RP119.html>

---

49. Soplalpoco, Y. (2022). Las TIC en el aprendizaje en educación básica, una revisión sistemática. *Revista Científica Emprendimiento Científico Tecnológico*, 3, 13.

50. Sosa Neira, E. A. (2018). Diseño de un modelo de incorporación de tecnologías emergentes en el aula (mitea) para la generación de estrategias didácticas por parte de los docentes. *Tesis Doctoral*. Universitat de les Illes Balears. España.

51. Terry, R., Taylor, J., & Davies, M. (2019). Successful teaching in virtual classrooms. En *Learning and Teaching in Higher Education* (pp. 211-221). Edward Elgar Publishing, Inc. <https://doi.org/10.4337/9781788975087.00035>

52. Torres, J. (2019). Implementación de aulas virtuales en escuelas de educación básica en zonas rurales de Ecuador: un estudio de caso. *Revista de Investigación Educativa*, 21(1), 78-93.

53. UNESCO. (2019). Marco de competencias de los docentes en materia de TIC. UNESCO.

54. UNESCO. (2022). Qué debe saber acerca del derecho a la educación. <https://www.unesco.org/es/education/right-education/need-know>

55. Valencia, J. (2020). Impacto de la pandemia de COVID-19 en la integración de la tecnología educativa en Ecuador. *Revista de Investigación en Educación*, 15(1), 78-93.

56. Vargas, A. (2020). Percepciones de los docentes de educación básica sobre el uso de la tecnología en el aula: un estudio cualitativo en Ecuador. *Revista Iberoamericana de Educación*, 85(3), 120-135.

57. Villafuerte, C. E. V. (2023). Estrategias de enseñanza aprendizaje en línea: Un análisis comparativo de plataformas de gestión del aprendizaje. *Nexus Research Journal*, 2(1), 45-57. <https://doi.org/10.62943/nrj.v2n1.2023.10>

58. Visvizi, A., Daniela, L., & Chen, C. W. (2020). Beyond the ICT- and sustainability hypotheses: A case for quality education. *Computers in Human Behavior*, 107, 106304. <https://doi.org/10.1016/J.CHB.2020.106304>

### Publisher's Note

ERUDEXA PUBLISHING remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of ERUDEXA PUBLISHING and/or the editor(s). ERUDEXA PUBLISHING disclaims responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.